
SGX Switchless Calls Made Configless
Peterson Yuhala

University of Neuchâtel
Neuchâtel, Switzerland

peterson.yuhala@unine.ch

Michael Paper
ENS de Lyon
Lyon, France

michael.paper@ens-lyon.fr

Timothée Zerbib
Institut Polytechnique de Paris

Paris, France
timothee.zerbib@ip-paris.fr

Pascal Felber
University of Neuchâtel
Neuchâtel, Switzerland
pascal.felber@unine.ch

Valerio Schiavoni
University of Neuchâtel
Neuchâtel, Switzerland

valerio.schiavoni@unine.ch

Alain Tchana
Grenoble INP

Grenoble, France
alain.tchana@grenoble-inp.fr

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. Pre-print version. Published in the 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

Abstract—Intel’s software guard extensions (SGX) provide
hardware enclaves to guarantee confidentiality and integrity
for sensitive code and data. However, systems leveraging such
security mechanisms must often pay high performance overheads.
A major source of this overhead is SGX enclave transitions
which induce expensive cross-enclave context switches. The Intel
SGX SDK mitigates this with a switchless call mechanism for
transitionless cross-enclave calls using worker threads. Intel’s
SGX switchless call implementation improves performance but
provides limited flexibility: developers need to statically fix the
system configuration at build time, which is error-prone and
misconfigurations lead to performance degradations and waste
of CPU resources. ZC-SWITCHLESS is a configless and efficient
technique to drive the execution of SGX switchless calls. Its
dynamic approach optimises the total switchless worker threads
at runtime to minimise CPU waste. The experimental evaluation
shows that ZC-SWITCHLESS obviates the performance penalty
of misconfigured switchless systems while minimising CPU waste.

Index Terms—Intel SGX, trusted execution environments, SGX
switchless calls, multithreading

I. INTRODUCTION

Cloud computing increases privacy concerns for applica-
tions offloaded to the cloud, as sensitive user data and code
are largely exposed to potentially malicious cloud services.
Trusted execution environments (TEEs) like Intel SGX [3],
[9], [11], [19] provide secure enclaves, offering confidentiality
and integrity guarantees to sensitive code and data. Enclaves
cannot be accessed by privileged or compromised software
stacks, including the operating system (OS) or hypervisor.
However, SGX enclaves introduce overheads, primarily from
enclave context switches, upon every CPU transition between
non-enclave and enclave code. The Intel SGX SDK [6] pro-
vides specialised function call mechanisms (i.e., ecalls and
ocalls), to enter, and respectively exit, an enclave. Enclave
switches cost up to 14,000 CPU cycles [32], [33], on average
56× more expensive compared to regular system calls on
similar Intel CPUs (i.e., 250 cycles [21]). This represents a
serious performance bottleneck for applications which perform

many enclave context switches, e.g., to perform system calls
via ocalls [33].

Techniques exist [4], [28], [33] which circumvent expensive
enclave switches by leveraging worker threads in and out
of the enclave. Client threads, i.e., inside or outside of the
enclave, send their requests to the opposite side via shared
memory. Worker threads handle such requests and send the
appropriate responses once completed. The Intel SGX SDK
implements this technique via the switchless call library [8].
While this approach improves the performance of enclave con-
text switches, our practical exeperience revealed the following
problems. First, Intel SGX switchless calls must be manually
configured at build time and misconfigurations can lead to
performance degradations and waste of CPU resources [8].
Second, manually configuring ecalls or ocalls as switch-
less at build time is not ideal: developers rarely know the
frequency nor the duration of the calls, which are typically
application and workload specific.

To mitigate these problems, we propose ZC-SWITCHLESS
(zero-config switchless), a system to dynamically select
switchless routines at run time and configure the most
appropriate number of worker threads on the fly. This
approach prevents static configuration of switchless routines
and worker threads, and obviates the performance penalty
of misconfigured switchless systems, while minimizing CPU
waste.

ZC-SWITCHLESS leverages an application level scheduler
that monitors runtime performance metrics (i.e., number of
wasted cycles or fallback calls to regular non-switchless rou-
tines, etc.); these are used to dynamically configure an optimal
number of worker threads to fit the current workload while
minimising CPU waste.

We further analysed the Intel SGX SDK implementation,
and derived practical configuration tips for Intel SGX switch-
less calls. In addition, we tracked performance issues with
Intel’s SDK memcpy implementation, and propose an opti-
mised version which removes a major source of performance
overhead for both switchless and regular SGX transition
routines.

1

ar
X

iv
:2

30
5.

00
76

3v
2

 [
cs

.C
R

]
 7

 J
ul

 2
02

3

In summary, our contributions are: (1) The design and the
implementation of ZC-SWITCHLESS, a configless and efficient
system to dynamically select and configure switchless calls, to
be released as open-source. (2) An optimised implementation
for the Intel SGX SDK’s memcpy, also to be open-sourced.
(3) An extensive experimental evaluation demonstrating the
effectiveness of our approach via micro- and macro-bench-
marks.

II. BACKGROUND ON INTEL SGX

Intel SGX extends Intel’s ISA to enable secure memory
regions called enclaves. The CPU reserves an encrypted
portion of DRAM, called the enclave page cache (EPC), to
store enclave code and data at runtime. EPC pages are only
decrypted inside the CPU by the memory encryption engine
(MEE) once loaded in a CPU cache line.

Enclaves operate only in user mode and thus cannot issue
system calls (syscalls) [9] directly. The ecalls and ocalls
are specialised function calls to enter (using the EENTER

CPU instruction) and exit (using the EEXIT CPU instruction)
the enclave, respectively. The Intel SGX SDK provides a
secure version of the C standard library, the trusted libc
(tlibc), for in-enclave applications. The tlibc only relies
on trusted functions, and removes instructions forbidden by
Intel SGX [8].

Enclave applications can be deployed following two ap-
proaches: (1) running the entire application in the enclave
(e.g., SCONE [4], Graphene-SGX [5], Occlum [27], SGX-
LKL [23]), or (2) splitting the application into a trusted and
untrusted part which respectively execute inside and outside of
the enclave (e.g., Glamdring [15], Civet [30], Montsalvat [34]).

For both cases, unsupported routines not implemented by
the tlibc must be relayed to the untrusted part via ocalls,
to be executed in non-enclave mode.

Both ecalls and ocalls perform expensive CPU con-
text switches, i.e., switching from enclave to non-enclave
mode, and vice-versa. The overhead of enclave transitions
is mainly due to the CPU flushing its caches as well as all
TLB entries containing enclave addresses, so as to preserve
confidentiality [9]. More precisely: an ocall = EEXIT +
untrusted host processing + EENTER. EEXIT flushes
the CPU caches and possibly invalidates branch predictors
and TLBs. Similarly, the EENTER instruction performs many
checks and requires hardware-internal synchronization of CPU
cores [26].

In the following, we focus on ocalls as they are usu-
ally the principal source of overhead due to enclave context
switches, based on our experience. However, the techniques
we propose in this paper can equally be used for ecalls.
Switchless ocalls. The Intel SGX SDK provides two vari-
ants of ocalls. First, regular ocalls perform costly context
switches (up to 14,000 cycles [32]) from enclave mode to
non-enclave mode. Second, switchless ocalls [8] provide a
mechanism to do cross-enclave calls without performing an
enclave context switch. In a nutshell (i.e., Fig. 1), worker
threads outside the enclave perform unsupported functionality

Trusted (TEE) ! Untrusted

! Enclave
thread !

! Enclave
thread !

…

! Worker
thread !

! Worker
thread !

…ocall
task pool

Client threads

Fig. 1: Intel SGX switchless ocall architecture.

(e.g., syscalls) on behalf of in-enclave client threads. The latter
send ocall requests to a task pool in untrusted memory. The
worker threads outside the enclave wait for pending tasks in
the task pool, and execute them until the task pool is empty [8].
These operations are done without performing any enclave
transition.

III. LIMITATIONS OF INTEL SGX SWITCHLESS CALLS

In the following, we identify three main problems and
limitations with the Intel switchless calls implementation:
(i) switchless call selection (§III-A), (ii) worker thread pool
sizing (§III-B), and (iii) Intel SDK parameterisation (§III-C).

Setup. We use a 4-core (8 hyper-threads) Intel Xeon CPU E3-
1275 v6 clocked at 3.8 GHz, 8 MB L3 cache, 16 GB of RAM,
with support for Intel SGX v1. We deploy Linux Ubuntu
18.04.5 LTS with kernel 4.15.0-151 and Intel SGX SDK v2.14.
We report the median over 10 executions.

A. Switchless calls selection

At build-time, developers must specify the routines (i.e.,
ecalls or ocalls) to be handled switchlessly at run time.
The Intel SGX reference [8] suggests to configure a routine
as switchless if it has short duration and is frequently called.
However, these details are hardly available to the developer at
build time. Auto-tuning tools [18] cannot spot potential switch-
less routines by relying solely on duration and frequency, as it
would require a full code path exploration, a costly operation
for large systems. Further, the execution frequency of a specific
application routine is workload specific and hard to configure
at build time.

Improperly selected switchless routines degrade the perfor-
mance of SGX applications. We show this behaviour with a
synthetic benchmark. It executes n ocalls to 2 functions
as follows: α calls to function f which is known to benefit
from switchless calls (as shown in [28]), while β calls to g
which should run as a regular ocall. If α = β, the sum
of the execution times of calls to f is negligible compared
to the same sum for calls to g. Hence, to better highlight
the performance gains when executing f switchlessly, we set
α = 3β and n = α+β. In this test, f is an empty function (i.e.,
void f(void){}). On the other hand, g routine executes
asm("pause") in a loop, i.e., a busy-wait loop.

We evaluate five different configurations: C1-C5. In C1,
all f functions run switchlessly, while g functions run as
regular ocalls. We expect C1 to perform best. In C2, only

2

0

1

2

3

 0 1 2 3 4 5 6 7 8

T
im

e
 [

s
]

Number of worker threads

Regular vs. switchless ocalls − 8 enclave threads
[C1] f switch., g reg.
[C2] f reg., g switch.

[C3] n/2 f switch., n/2 g switch., others

[C4] f switch., g switch.
[C5] f reg., g reg.

Fig. 2: Runtime for 75,000 switchless ocalls to f and 25,000
regular ocalls to g

the g functions run switchlessly, and we expect C2 to be
the worst. In the C3 case, α

2 f and β
2 g functions run

switchlessly while the other f and g functions run as regular
ocalls. Finally, in C4 and C5 all functions run switchlessly
or regularly, respectively. We observe the following results
when executing 100’000 ocalls (i.e., switchless and regular
ocalls combined). C1 is the fastest configuration (0.9 s),
≈ 1.8× faster than C2, indeed the worst (1.6 s). C3 and
C4 complete in 1.3 s (1.44× slower than C1). Finally, C5
completes in 1 s.

Take-away 1 : An improper selection of switchless coroutines
degrades the performance of SGX applications.

B. Worker thread pool sizing

Developers must specify the total number of worker threads
allowed to the SGX switchless call mechanism at build time.
However, an overestimation of worker threads for ocalls
can lead to a waste of CPU resources due to busy-waiting
of worker threads awaiting switchless requests (see [8], page
71). The latter will limit the number of applications that can
be co-located on the same server or interfere with application
threads which will be deprived of CPU resources. Similarly,
an underestimation can lead to poor application performance
as more ocalls will perform costly enclave switches.

Using the same synthetic benchmark from §III-A, we val-
idate these effects for a varying number of worker threads
(see Fig. 2). The optimal number of workers strictly depends
on the specific configuration. At its best (C1), the fewer the
workers, the better the performance: this is expected, as there
are as many in-enclave threads as hardware cores. In the other
cases, we observe better results when executing functions as
regular ocalls, where the best overall result is using 4 worker
threads.

Fig. 3 presents the execution time of the application de-
pending on both the number of worker threads (from 1 to
5) and the duration of g (from 0 to 500 asm{"pause"}
instructions, each spending 140 CPU cycles). We report 4
configurations (we omit C3 for the sake of clarity and because
it obtains results between the worst of C1 and C2). We can
make the following observations. C5 (i.e., both f and g as
regular ocalls) performs worst on average for the shortest
g function (i.e., 0 pauses), but it is best in several cases for

0

0.5

1

1.5

1 2 3 4 5#Workers:

T
im

e
 [

s
]

0 pause

C1 C2 C4 C5

1 2 3 4 5

100 pause

1 2 3 4 5

200 pause

0

1

2

3

4

1 2 3 4 5#Workers:

T
im

e
 [

s
]

300 pause

1 2 3 4 5

400 pause

1 2 3 4 5

500 pause

Fig. 3: Runtime for 100, 000 ocalls with 8 in-enclave threads
for different durations of g function.

longer g functions, regardless of the number of workers. C1
(f switchless, g regular) is the best when g is longer than 200
pauses. Executing all functions switchlessly (C4) is good for
short g functions, scaling with the available worker threads.

Take-away 2 : Switchless calls perform best when the calls
are short, relative to the cost of an enclave transition.

C. Intel SDK parameterisation

If a switchless task pool is full or all worker threads
are busy, a switchless call falls back to a regular ecall
or ocall. The Intel SGX SDK defines the variable
retries_before_fallback (rbf) for the number of
retries client threads perform in a busy-wait loop, waiting for
a worker thread to start executing a switchless call request,
before falling back to a regular ecall/ocall [8]. Similarly,
the SDK defines retries_before_sleep (rbs), for the
number of asm{"pause"} done by a worker while waiting
for a switchless request, before going to sleep. The SDK’s
default values for both rbf and rbs are set at 20,000 retries.

However the value of rbf especially is abnormal in
both a theoretical (as we explain next) and practical sense:
between successive retries, a caller thread executes an
asm{"pause"} instruction, which has an estimated latency
up to 140 cycles on Skylake-based microarchitectures (where
SGX extensions were first introduced, see https://intel.ly/
3hTVEMG, page 58). A caller thread can hence wait more
than 2.8 M cycles before its call is handled by a worker
thread. This is about 200× more costly relative to a regular
ocall transition (≈14,000 cycles), and defeats the purpose
of using switchless calls, i.e., to avoid the expensive transition.
Similarly for rbs, a worker thread will wait for 2.8 M cycles
before going to sleep.

While developers can easily tune the rbf and rbs values
at build time, the Intel SDK lacks proper guidance.

Take-away 3 : The proper configuration of the Intel SGX
switchless-related parameters remains hard and misconfigu-
rations lead to poor performance.

3

https://intel.ly/3hTVEMG
https://intel.ly/3hTVEMG

Trusted (TEE)Untrusted

WT1 WT2

…
Buf2Buf1

!

ET1 ET2

…
ET3

❷

❸

❹❺

❶

Scheduler

Stats

Fig. 4: ZC-SWITCHLESS general overview.

IV. ZC-SWITCHLESS

The main goal of ZC-SWITCHLESS is to provide a resource-
efficient implementation for SGX switchless calls.
We first present its internal scheduler in §IV-A-IV-C. In ad-
dition, we detail a more efficient implementation of tlibc’s
memcpy (§IV-F), used for intra-enclave data copying, as well
as data exchange between the enclave and the outside world.

Fig. 4 shows an overview of ZC-SWITCHLESS. In a nut-
shell, we consider any function (Fig. 4-❶) as a potential
candidate to run as switchless, thus avoiding the need for
manual selection by developers at build time. Our design
allows the number of worker threads to be tuned dynamically,
to minimise CPU waste while improving performance via the
switchless call technique. We do so by having the scheduler
implement a feedback loop (Fig. 4-❷) to periodically collect
ocall statistics (Fig. 4-❸), determine the optimal number
of worker threads (Fig. 4-❹), and finally apply its decision
(Figure 4-❺). Inside the enclave, a call is executed in a switch-
less manner if the caller finds at least one idle worker thread.
The remainder details further these aspects. Unless indicated
otherwise, the term scheduler refers to ZC-SWITCHLESS’s
scheduler.

A. ZC-SWITCHLESS’s scheduler

The main objective of the scheduler is to minimise wasted
CPU cycles. We define a wasted CPU cycle as one spent by a
CPU core doing something that does not make the application
(i.e., caller thread) move forward in its execution [16].

In the case of Intel SGX, we identify two potential sources
of wasted CPU cycles: (1) transitions between enclave and
non-enclave mode in the case of regular ocalls, and (2) busy-
waiting in the case of switchless ocalls. The overhead
of regular ocalls has been evaluated extensively in past
research [33], and it varies also according to the specific CPU
and micro-code version. We evaluated this overhead to be
∼13,500 CPU cycles for our experimental setup (see §III).

Each active worker can be at any point in time in one of
two states: either the worker is handling an ocall, in which
case the enclave thread (which made the ocall) is busy-
waiting, or the worker is busy-waiting for incoming ocall
requests. Therefore, for every active worker thread, there is
always exactly one thread busy-waiting. The extra cost of
having M worker threads is thus M multiplied by the number
of cycles during which they have been active.

Scheduling
phase

Configuration
phase

Fig. 5: ZC-SWITCHLESS scheduler phases.

PROCESSING

RESERVED

WAITING

UNUSED

EXIT

PAUSED

Fig. 6: Worker thread state transitions.

The scheduler periodically computes the number of worker
threads that minimises the number of wasted CPU cycles.
Throughout its lifetime, the scheduler switches between two
phases (see Fig. 5): a scheduling phase that lasts a scheduler
quantum, Q, during which it sets an optimal number of
switchless workers, and a configuration phase, during which
it calculates the optimal number of switchless workers for the
next scheduling phase.

We denote by Tes the duration of an enclave switch, F the
number of calls not being handled switchlessly (i.e., fallback),
N the number of cores on the machine and M the number
of worker threads set during ZC-SWITCHLESS’s scheduler
quantum (Q, set empirically to 10 ms).

The number of wasted cycles during T cycles is: U = F ·
Tes + M · T . At every quantum (i.e., during a configuration
phase), the scheduler thread estimates the optimal number of
workers for the next quantum (i.e., scheduling phase).

To estimate the number of workers during a configuration
phase, the scheduler sleeps for N

2 +1 micro-quanta, of length
µ · Q each, with a different number of workers i each time,
0 ≤ i ≤ N

2 (i.e., N
2 + 1 possible values). The constant µ is

a small time period, so the configuration phase can be quick,
but still long enough to capture the needs (in terms of CPU
resources) of the application at a given time. We empirically
set µ = 1

100 . During every micro-quantum, the number of non-
switchless calls is recorded so that the scheduler can compute
Ui = Fi ·Tes + i ·µ ·Q ·CPU_FREQ once awake. Finally, the
scheduler keeps M ′ workers for the next scheduling phase,
where M ′ is such that UM ′ = mini Ui.

To deactivate a worker thread, the scheduler sets a value in
the worker’s buffer (see §IV-B). The worker’s loop function
will eventually check this value and, if it is set and no caller
thread has reserved (or is using) the worker, the worker will
pause. To re-activate a paused worker, the scheduler sends a
signal to wake up the corresponding worker thread.

B. Worker thread state machine

We associate to each worker a buffer structure that con-
sists of 4 main fields: an untrusted memory pool (preallocated)
used by callers to allocate switchless requests, a field to hold
the most recent switchless request, a status field to track
the worker status, and a field used to communicate with the
scheduler. Fig. 6 summarises the status transitions of a
worker thread.

4

A worker is initially in the UNUSED state. When a caller
needs to make a switchless call, it finds an UNUSED worker
and switches the worker’s state to RESERVED. We rely on
GCC atomic built-in operations [10] for thread synchronisa-
tion. The caller allocates a switchless request structure from
the corresponding memory pool. A switchless request com-
prises: an identifier of the function to be called, the function
arguments (if present), and the return result (if present).

The caller copies its request to the worker’s buffer and
changes the worker’s state from RESERVED to PROCESSING.
At this point, the worker reads the request and calls the
desired function with the corresponding arguments. Once
the function call completes, the worker updates the request
with the returned results (if present) and switches from the
PROCESSING to the WAITING state.

Finally, the caller copies the returned results into enclave
memory and changes the worker’s state to UNUSED.

The memory pools of worker buffers are freed and re-
allocated when full via an ocall. Using preallocated memory
pools prevents callers from performing ocalls to allocate
untrusted memory for each switchless request, which will
defeat the purpose of using a switchless system.

Upon program termination, the scheduler sets a value in
workers’ buffers so the workers can switch to the EXIT state.
At this stage, the workers perform final cleanup operations
(e.g., freeing memory) and then terminate.

C. Switchless call selection

In zc, any routine can be run as switchless if the cor-
responding enclave caller thread finds an available/unused
worker thread. Otherwise, the call immediately falls back to a
regular ocall without any busy waiting.

D. Integrating ZC switchless with other TEE implementations

Other popular TEE implementations operate following a
very similar architecture to Intel SGX. For example in ARM
TrustZone (Armv8-M architecture) [22], the application is
divided into two parts: a secure world (i.e., enclave) with very
limited system functionality, and a normal world (untrusted
world) with a richer system API. Similar to Intel SGX,
CPU thread transitions between the secure and normal worlds
require extra security checks to guarantee data confidentiality
and integrity. So conceptually, the design proposed in ZC can
be applied here. This will, however, require some modifica-
tions at the implementation level.

E. Security analysis of ZC-SWITCHLESS

The security analysis of ZC-SWITCHLESS is similar to
that presented in [33]. All switchless call designs (i.e., Intel
switchless, ZC-SWITCHLESS, hotcalls [33]) are based on
threads in and out of the enclave communicating via plaintext
shared memory. Thus, the switchless design proposed by ZC-
SWITCHLESS is no less secure than that proposed by the Intel
SGX switchless library.

Impact of ZC scheduler on security. The ZC-
SWITCHLESS scheduler is located in the untrusted runtime,

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0
.5

 k
B

1
6
kB

3
2
 k

B

T
h

ro
u

g
h

p
u

t
[G

B
/s

]

Buffer size (copied 100,000 times)

Intel SDK, unaligned Intel SDK, aligned

write syscall with Intel SGX SDK default memcpy

Fig. 7: Throughput for ocalls of the write system call to
/dev/null (100,000 operations, average over 10 executions)
for aligned and unaligned buffers.

which leaves it vulnerable to malicious tampering. However,
since the scheduler only decides how many worker threads
should be used and when, the worst case scenario here will
be a DoS, e.g., by killing worker threads. The enclave’s
confidentiality or integrity, however, cannot be compromised
by tampering with the scheduler.

F. Trusted libc’s memcpy optimisation

For security reasons, the Intel SDK provides its own im-
plementation of a subset of the functions from the libc, i.e.,
the tlibc. The tlibc re-implements most of the functions
from the libc that do not require system calls, e.g., memset,
memcpy, snprintf, etc. Because enclave code cannot be
linked to dynamic libraries, these re-implementations are stat-
ically linked to the enclave application at build time.

We focus on the Intel SDK tlibc version of memcpy [2],
as it is heavily used to pass ocall arguments from trusted
memory to untrusted memory and back for the results [14].
Our tests highlighted huge performance gaps when using
aligned buffers (i.e., when the src and dest arguments are
congruent modulo 8) and unaligned buffers.

For instance, Fig. 7 presents the throughput when issuing
100,000 write system calls, which requires an ocall and
involves memcpy calls, with varying lengths of aligned and
unaligned buffers ranging from 512 B to 32 kB. We observe
that the execution time for unaligned buffers is consistently
higher than for aligned buffers. Moreover, when using un-
aligned buffers, we observe poor scalability trends for write
when increasing the buffer sizes, basically plateauing at about
0.4 GB/s.

By analysing Intel’s original implementation of tlibc’s
memcpy, we observed that it performs a software word-by-
word copy for aligned buffers but a byte-by-byte copy for
unaligned buffers. We provide a revised and more efficient
implementation leveraging the hardware copy instruction rep
movsb, as also advised by Intel’s optimization manual [1].
Listing 1 sketches our optimised approach, which we evaluate
in depth in §V-D.

V. EVALUATION

Our evaluation answers the following questions:

5

1 void *memcpy(void *dst0, const void *src0, size_t length){
2 ...
3 /* Copy forward. */

4 __asm__ volatile(
5 "rep movsb"
6 : "=D"(dst0), "=S"(src0), "=c"(length)
7 : "0"(dst0), "1"(src0), "2"(length)
8 : "memory");

9 done:
10 return (dst0);
11 }

Listing 1: ZC-SWITCHLESS optimised memcpy.

Q1) How does ZC-SWITCHLESS impact application perfor-
mance for (1) static workloads (§V-A1), and (2) dynamic
workloads (§V-C1)?

Q2) What is the effect of misconfigurations of Intel switchless
on application performance? (§V-A1) and (§V-C1)?

Q3) What is the effect of ZC-SWITCHLESS on CPU utilisa-
tion for static (§V-A2) and dynamic (§V-C2) workloads?

Q4) What is the performance gain of our improved memcpy
implementation (§V-D) ?

Experimental setup. All experiments use a server equipped
with a 4-core Intel Xeon CPU E3-1275 v6 clocked at 3.8 GHz
with hyperthreading enabled. The CPU supports Intel SGX,
and ships with 32 KB L1i and L1d caches, 256 KB L2 cache
and 8 MB L3 cache. The server has 16 GB of memory and runs
Ubuntu 18.04 LTS with Linux kernel version 4.15.0-151. We
run the Intel SGX platform software, SDK, and driver version
v2.14. All our enclaves have maximum heap sizes of 1 GB.
The EPC size is 128 MB (93.5 MB usable by enclaves). We
use both static and dynamic benchmarks.

Our static benchmarks are based on kissdb [12] and
an Intel SGX port of OpenSSL [7]: kissdb is a simple
key/value store implemented in plain C without any exter-
nal dependencies, while OpenSSL [24] is an open-source
software library for general-purpose cryptography and secure
communication.

For dynamic benchmarks, we use lmbench [20], a suite of
simple, portable, ANSI/C microbenchmarks for UNIX/POSIX.

For all benchmarks, we set the initial number of worker
threads to #logical_cpus

2 for ZC-SWITCHLESS. This number is
4 for the SGX server used. For Intel switchless experiments,
we maintain the default rbf and rbs values (i.e., 20, 000).

A. Static benchmark: kissdb

We issue a varying number of key/value pair writes to
kissdb, and we evaluate and compare the performance and
CPU utilisation of ZC-SWITCHLESS with Intel switchless.

We ran our benchmark in 3 modes: without using switchless
calls (no_sl), using Intel switchless calls, and using ZC-
SWITCHLESS (zc for short). For Intel switchless, we consider
two values for the number of switchless worker threads: 2
and 4. In kissdb, we know empirically that the 3 most
frequent ocalls in the benchmarks are: fseeko, fwrite,
and fread. Therefore, for kissdb we benchmark Intel’s
switchless in 10 (2×5) different configurations: only fseeko
as switchless (i-fseeko-x, x being 2 or 4, the number of

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 3 4 5 6 7 8 9 10

L
a
te

n
c
y
 (

s
)

Num of keys (x1000)

i−all zc no_sl i−fread i−fwrite i−frw i−fseeko

(a) 2 writers, 2 workers−intel

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 3 4 5 6 7 8 9 10

Num of keys (x1000)

(b) 2 writers, 4 workers−intel

Fig. 8: kissdb: average latency of key/value SET commands.

Intel switchless worker threads), only fwrite as switchless
(i-fwrite-x), only fread as switchless (i-fread-x),
both fread and fwrite as switchless (i-frw-x), and all
the 3 ocalls as switchless (i-all-x). Note that these ten
configurations correspond to possible configurations an SGX
developer could have set up for kissdb. We report the
averages over 5 runs.

1) ZC-SWITCHLESS vs. Intel switchless: Answer to Q1 &
Q2. Fig. 8 (a) and (b) show the average latencies for setting a
varying number of 8-byte keys and 8-byte values in kissdb,
with respectively 2 and 4 switchless worker threads configured
for Intel switchless.

Observation. Here, zc is 1.22× faster when compared to
a system without switchless calls, and respectively 1.19×,
1.13×, 1.13×, 1.05×, and 1.02× faster when compared to
i-fread-2, i-fwrite-2, i-fseeko-2, and i-frw-2.

However, zc is about 1.33× slower for i-all-2. We note
how zc is (on average) 1.26× faster than i-fread-4, 1.22×
faster than i-fwrite-4, 1.13× faster than i-fseeko-4,
1.10× than i-frw-4. However, it is 1.16× slower than
i-all-4.

Discussion. In kissdb, fseeko is the most frequent
ocall, invoked almost twice more often than fread and
fwrite. Further, fseeko is much shorter in duration rel-
ative to fread and fwrite, which explains the better
performance of i-fseeko when compared to i-fread
and i-fwrite for both 2 and 4 switchless worker threads.
i-fwrite configurations show the poorest performance for
Intel’s switchless in all cases.

However, when both fread and fwrite are config-
ured as switchless (i-frw), we see an improvement in
performance relative to i-fwrite and i-fread, almost
equal to i-fseeko performance. Here the combined sum of
fread and fwrite calls surpasses the number of fseeko
invocations, which leads to a more significant number of
switchless calls in i-frw, thus leading to similar performance
as fseeko.

This configless strategy of zc outperforms statically mis-
configured systems like i-fread and i-fwrite (for both 2
and 4 Intel switchless workers), shows similar performance as
i-fseeko-2, and is faster than i-fseeko-4. The observed
spikes (e.g., 7,500 and 8,500 keys) in zc are due to ocall
operations when reallocating full memory pools for zc buffers
(see §IV-B).

6

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

C
P

U
 u

s
a
g
e
 (

%
)

Num of keys (x1000)

(a) 2 writers, 2 workers−intel

i−all zc no_sl i−fread i−fwrite i−frw i−fseeko

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

Num of keys (x1000)

(b) 2 writers, 4 workers−intel

Fig. 9: Average %CPU usage for key/value pair SET ops in
kissdb

Take-away 4 : ZC-SWITCHLESS achieves better performance
relative to non-switchless systems, and outperforms miscon-
figured Intel switchless systems.

In i-all, Intel’s switchless outperforms zc because it
maintains a constant number of switchless workers (2 or 4),
whereas zc uses few worker threads at various points during
the application’s lifetime.

Take-away 5 : A well configured Intel switchless system out-
performs zc, but zc obviates the performance penalty ob-
served from the misconfigured switchless sytems.

2) ZC-SWITCHLESS vs. Intel switchless: CPU usage:
Answer to Q3. We now evaluate the CPU utilisation of
ZC-SWITCHLESS and Intel switchless when running the
same experiments as in §V-A1. We measured the overall
CPU utilisation for the given systems from the kernel’s
/proc/stat. The percentage CPU utilisation is calculated
by: %cpu_used = (user+nice+system)

(user+nice+system+idle) ∗ 100 where: user
is the time spent for normal processes executing in user mode,
nice is the time spent for processes executing with “nice”
priority in user mode, system is the time spent for processes
executing in kernel mode, and idle is time spent by the CPU
executing the system idle process.

Fig. 9 shows the average CPU usage for setting a varying
number of 8-byte keys and 8-byte values in kissdb, with
respectively 2 and 4 switchless worker threads configured for
Intel switchless.

Observation. The experimental results show that zc maintains
approximately 60% CPU usage throughout the benchmark’s
lifetime. For 2 Intel switchless workers, all Intel switchless
configurations stabilise at about 55% CPU usage, while for 4
Intel switchless workers, the Intel switchless configurations
stabilise at about 80% CPU usage. All switchless systems
have visibly higher CPU usage when compared to the system
without switchless calls enabled (no_sl).

Discussion. Intel’s switchless mechanism maintains a constant
number of worker threads (2 or 4) throughout the application’s
lifetime, while zc’s scheduler increases or decreases the
number of worker threads (to a maximum of 2 or 4) with
respect to the workload. This explains the overall lower CPU
usage of zc relative to Intel switchless.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

20 40 60 80 100 120 140 160 180 200 220 240

L
a
te

n
c
y
 (

s
)

File size (kb)

Latency (s)
i−frwoc zc no_sl i−fread i−fwrite i−frw i−foc

 0

 20

 40

 60

 80

 100

20 40 60 80 100 120 140 160 180 200 220 240

C
P

U
 u

s
a
g
e
 (

%
)

File size (kb)

CPU usage (%)

(a) 2 Intel workers.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

20 40 60 80 100 120 140 160 180 200 220 240

L
a
te

n
c
y
 (

s
)

File size (kb)

Latency (s)
i−frwoc zc no_sl i−fread i−fwrite i−frw i−foc

 0

 20

 40

 60

 80

 100

20 40 60 80 100 120 140 160 180 200 220 240

C
P

U
 u

s
a
g
e
 (

%
)

File size (kb)

CPU usage (%)

(b) 4 Intel workers.

Fig. 10: Latency and CPU usage for OpenSSL.

Take-away 6 : zc outperforms misconfigured systems (e.g.,
i-fread,i-fwrite,i-frw) while minimizing CPU us-
age.

B. Static benchmark: OpenSSL file encryption/decryption

This benchmark consists of two enclave threads encrypting
and decrypting data read from files. The first thread reads
chunks of plaintext from a file, encrypts these in the enclave,
and writes the corresponding ciphertext to another file, while
the second thread reads ciphertext from a different file, and
decrypts it inside the enclave. All cryptographic operations
are done with the AES-256-CBC [25] algorithm.

Similarly, we ran this benchmark in the 3 modes described
above: no_sl, using Intel switchless calls (2 and 4 workers),
and zc.

In the OpenSSL benchmark, we know empirically that
4 ocalls are called most frequently: fread, fwrite,
fopen, and fclose. We consider 10 possible configurations
(2× 5) for Intel’s switchless routines: only fread as switch-
less (i-fr-x, x being 2 or 4, the number of Intel switchless
worker threads), only fwrite as switchless (i-fw-x), both
fread and fwrite (i-frw-x), both fopen and fclose
(i-foc-x), and all 4 ocalls as switchless (i-frwoc-x).

Fig. 10a and Fig. 10b show the latency and CPU usage
for these configurations. We highlight and discuss essential
observations.

Observation and discussion. In this OpenSSL benchmark,
fread and fwrite are respectively called ≈ 2700× and
≈ 1400× more frequently as compared to both fopen and
fclose. This explains why Intel’s latency is poor (close
to no_sl) with i-foc, as more ocalls perform context
switches, and much better (w.r.t no_sl) with i-frw, where
a larger number of ocalls are performed switchlessly. Intel
performs best with i-frwoc, when the four ocalls are all

7

configured as switchless. However, we observe that zc is
about 1.62× and 1.82× faster than Intel’s best configuration
i-frwoc, for 2 and 4 Intel workers respectively. This is
explained by the fact that the fread and fwrite calls here
are much longer (about 6× longer as compared to the previous
kissdb benchmark). This accentuates the bad effect of the
poor default rbf value in Intel’s switchless, as enclave threads
do longer pauses waiting for a switchless worker thread to
become available. This is absent in zc, where caller threads
immediately fall back.

Regarding CPU usage, zc’s scheduler set the number of
worker threads to 0, 1, 2, 3, 4 for respectively 9.4%, 4.6%,
84.4%, 1.6%, and 0% of the program’s lifetime. This explains
the similar CPU usage in zc and Intel 2 workers (except for
i-foc), while with 4 Intel workers, CPU usage for Intel’s
best config is about 1.62× larger than zc’s, despite the latter
performing better.

Take-away 7 : zc outperforms all Intel configurations when
ocalls are long; this is due to the poor default rbf value
in Intel’s switchless library.

C. Dynamic benchmark: lmbench
Our dynamic benchmark is based on the read and write

system call benchmarks of lmbench. The read benchmark
iteratively reads one word from the /dev/zero device [20],
while the write benchmark iteratively writes one word to
the /dev/null device. We devised a dynamic workload ap-
proach which consists of periodically (every τ = 0.5s) issuing
a varied number of read and write operations to lmbench
using two in-enclave caller threads (1 reader + 1 writer) over
a period of 60s. These operations trigger ocalls, and zc
scheduler adapts the number of worker threads accordingly.

The total run time of the dynamic benchmark is divided into
3 distinct phases, each lasting 20s: (1) increasing operation-
frequency: the number of operations is doubled periodically,
(2) constant operation-frequency: the number of operations
remains at a constant value (the peak value from phase-1),
and (3) decreasing operation-frequency, where the number of
operations is periodically decreased (reduced by half every
τ). We measure the read/write throughputs and CPU usage at
different points during the benchmark’s lifetime.

Similarly, we ran our benchmark in 3 modes: without using
switchless calls (no_sl), using Intel switchless calls, and us-
ing ZC-SWITCHLESS (zc). For Intel switchless, we consider
two values for the number of switchless worker threads: 2 and
4. For lmbench syscall benchmark, we know empirically
that the read and write syscalls are the most frequent
ocalls. So we configure Intel’s switchless in six (3× 2) dif-
ferent configurations: only write as switchless (i-write-
x), only read as switchless (i-read-x), both read and
write ocalls as switchless (i-all-x). Similarly, these
six configurations correspond to possible configurations an
SGX developer could have set for their program. We show
the throughputs and CPU usages as observed from both the
reader and writer threads. We highlight essential observations,
and analyze them in our discussions.

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55 60R
e
a
d
 t
p
u
t
(K

O
P

s
/s

)

Time (s)

i−all zc no_sl i−read i−write
(a) 2 workers−intel

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

(b) 4 workers−intel

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55 60W
ri
te

 t
p
u
t
(K

O
P

s
/s

)

Time (s)

(c) 2 workers−intel

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

(d) 4 workers−intel

Fig. 11: Read (a/b), write (c/d) tput. for zc vs. 2/4 Intel
switchless worker threads.

1) Dynamic benchmark: ZC-SWITCHLESS vs. Intel switch-
less: Answer to Q1 & Q2. Fig. 11 shows the operation
throughputs as observed by the reader (bottom) and writer
(top) threads respectively during the lifetime of the dynamic
benchmark.

Observation. The experimental results show that on av-
erage, zc is about 2.3× faster when compared to both
reader-i-write-2 and reader-i-write-4, and 2.1× and
2.5× faster when compared to writer-i-read-2 and writer-
i-read-4 respectively. However, zc is about 1.6× and 1.1×
slower when compared to properly configured Intel switchless
configurations i-all-2 (reader,writer) and i-all-4 (reader,
writer) respectively.

Discussion. From the perspective of the reader thread,
i-write is a misconfiguration as the read calls will never
be switchless, and similarly for the writer thread, i-read is a
misconfiguration as the write calls will never be switchless.
This explains the relatively lower throughputs of these config-
urations when compared to zc and the other switchless config-
urations. However, zc has a lower throughput when compared
to the better configurations: reader-(i-all,i-read) and
writer-(i-all,i-write).

2) ZC-SWITCHLESS CPU utilisation vs. Intel switchless:
Answer to Q3. We compute the CPU usage as explained
previously. Fig. 12 shows the average CPU usage as observed
by the reader (top) and writer (bottom) threads respectively
at the different points during the lifetime of the dynamic
benchmark.

Observation. Similarly to the throughputs, the CPU usage for
the studied configurations increases with time and plateaus at
a certain point. The experimental results show that on average,
zc CPU usage is about 1.8× and 1.6× more when compared
to reader-i-write-2 and writer-i-read-2 respectively, but
almost equal CPU usage on average when compared to reader-
i-write-4, writer-i-read-4, and reader/writer-i-all-2
respectively. However, reader/writer-i-all-4 use about 1.3×
more CPU when compared to zc.

Discussion. Similarly to the poor throughputs, we can eas-

8

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50 55 60

R
e
a
d
e
r

C
P

U
 (

%
)

Time (s)

i−all zc no_sl i−read i−write

(a) 2 workers−intel

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

(b) 4 workers−intel

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50 55 60

W
ri
te

r
C

P
U

 (
%

)

Time (s)

i−all zc no_sl i−read i−write

(c) 2 workers−intel

0

25

50

75

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

(d) 4 workers−intel

Fig. 12: Read(top)/Write(bottom) CPU usage % for zc vs. 2/4
Intel switchless worker threads.

ily highlight CPU waste for the misconfigurations: reader-
i-write-4 and writer-i-read-4, as they have similar CPU
usages when compared to zc on average but much poorer per-
formance with regards to the corresponding throughputs. ZC-
SWITCHLESS prevents this misconfiguration problem. For the
better configurations: reader-(i-read,i-all), and writer-
(i-write,i-all), Intel performs better than zc but this
usually comes at a higher CPU cost (especially for 4 Intel
workers), which is explained by the fact that Intel’s switchless
mechanism maintains the maximum number of workers when
there are pending switchless requests.

Take-away 8 : Poorly configured Intel switchless systems lead
to a waste of CPU resources. ZC-SWITCHLESS obviates
the performance penalty from misconfigured Intel switchless
systems, while minimising CPU waste.

D. Performance of improved memcpy

Answer to Q4. To evaluate the performance of our improved
memcpy implementation, we ran a benchmark similar to that
in §IV-F, which issues 100,000 write system calls from
within the enclave, with various sizes of aligned and unaligned
buffers ranging from 512 B to 32 kB. We ran this benchmark in
two modes: using the default memcpy implementation of the
SDK (vanilla-memcpy) and using our improved memcpy
implementation (zc-memcpy).

As shown in Fig. 13, our revised memcpy implementation
achieves a speedup, in the case of larger buffers, of up to
3.6× for aligned buffers and 15.1× for unaligned buffers.
Noteworthy, these speedups will benefit both regular and
switchless ocalls, as well as any application using the Intel
SDK’s memcpy implementation inside enclaves.

Impact on inter-enclave communication. Recent work [14]
presents a quantitative study on the performance of real-
world serverless applications protected in SGX enclaves. A
performance test of zc-memcpy in this work showed a
7% − 15% speedup for inter-enclave SSL transfers in the

0

1.0

2.0

3.0

4.0

5.0

6.0

0
.5

 k
B

1
6
kB

3
2
 k

B

T
h

ro
u

g
h

p
u

t
[G

B
/s

]

Buffer size (copied 100,000 times)

Intel SDK, unaligned
Intel SDK, aligned

ZC−Switchless, unaligned
ZC−Switchless, aligned

write syscall with vanilla and optimized memcpy

Fig. 13: Throughput for ocalls of the write system call to
/dev/null (100,000 operations, average over 10 executions)
for aligned and unaligned buffers.

context of their benchmarks, which confirms the efficiency
of zc-memcpy for copy-intensive operations.

VI. RELATED WORK

We classify related work into three categories, as detailed
next.

(1) SGX benchmarking and auto-tuning tools. In [18],
authors use stochastic optimisation to enhance the performance
of applications hardened with Intel SGX. [17] proposes a
framework for benchmarking SGX-enabled CPUs, micro-code
revisions, SDK versions, and extensions to mitigate enclave
side-channel attacks. These tools do not provide dynamic
configuration of the switchless mechanisms.

(2) SGX performance improvement. Weichbrodt et al. [32]
propose a collection of tools for high-level dynamic per-
formance analysis of SGX enclave applications, as well as
recommendations on how to improve enclave code and runtime
performance, e.g., by batching calls, or moving function
implementations in/out of the enclave to minimise enclave
transitions. Intel VTune Profiler [31] permits to profile en-
clave applications to locate performance bottlenecks, while
Dingding et al. [13] provide a framework to improve enclave
creation and destruction performance. ZC-SWITCHLESS fo-
cuses on improving enclave performance efficiently via the
switchless call mechanism.

(3) SGX transitions optimizations. Previous work [4], [21],
[29], [33] circumvents expensive SGX context switches by
leveraging threads in and out of the enclave which commu-
nicate via shared memory, an approach also implemented by
Intel [8].

Tian et al. [28] propose a switchless worker thread schedul-
ing algorithm aimed at maximising worker efficiency so as
to maximise performance speedup. ZC-SWITCHLESS on the
other hand, leverages a scheduling approach aimed at min-
imising CPU waste while improving application performance
relative to a non-switchless system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we highlight the limitations of Intel’s switch-
less call implementation via experimental analysis. To mit-
igate the issues raised, we propose ZC-SWITCHLESS, an
efficient and configless technique to drive the execution of

9

SGX switchless calls. ZC-SWITCHLESS leverages an in-
application scheduler that dynamically configures an optimal
number of worker threads which minimises the waste of
CPU resources and obviates the performance penalty from
misconfigured switchless calls. Our evaluation with a varied
set of benchmarks shows that ZC-SWITCHLESS provides good
performance while minimising CPU waste.

We will extend ZC-SWITCHLESS by integrating with profil-
ing tools (see §VI), to offer deployers an additional monitoring
knob over SGX-enabled systems. Further, while the perfor-
mance issues with memcpy were unexpected, we speculate
similar issues might exist in other routines of the tlibc, for
which a more in-depth analysis should be dedicated.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Sci-
ence Foundation under project PersiST (no. 178822) and the
VEDLIoT (Very Efficient Deep Learning in IoT) European
project (no. 957197).

REFERENCES

[1] Intel SGX Reference Manual, Section 3.7.6.1. https://intel.ly/31MrqTQ.
[2] Intel SGX SDK, memcpy. https://tinyurl.com/95xcmak.
[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. In-

novative technology for CPU based attestation and sealing. In 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L Stillwell, et al. SCONE: Secure linux containers
with Intel SGX. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[5] Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In USENIX
Annual Technical Conference (ATC), July 2017.

[6] Intel Corporation. SDK for Intel software guard extensions. https://01.
org/intel-software-guard-extensions/downloads.

[7] Intel Corporation. SDK for Intel software guard extensions ssl. https:
//github.com/intel/intel-sgx-ssl.

[8] Intel Corporation. Intel software guard extensions developer reference
for Linux OS. https://download.01.org/intel-sgx/sgx-linux/2.13/docs/
Intel_SGX_Developer_Reference_Linux_2.13_Open_Source.pdf, 2018.

[9] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016(86), 2016.

[10] Built-in Functions for Memory Model Aware Atomic Operations. https:
//gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html, 2021.

[11] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan Del Cuvillo. Using innovative instructions to create trustworthy
software solutions. 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP), 2013.

[12] Kissdb: simple stupid database. https://github.com/adamierymenko/
kissdb.

[13] Dingding Li, Ronghua Lin, Lijie Tang, Hai Liu, and Yong Tang.
SGXPool: Improving the performance of enclave creation in the cloud.
Transactions on Emerging Telecommunications Technologies, 2019.

[14] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential serverless made
efficient with plug-in enclaves. In 48th Annual International Symposium
on Computer Architecture (ISCA), 2021.

[15] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch.
Glamdring: Automatic application partitioning for intel SGX. In
USENIX Annual Technical Conference (ATC), July 2017.

[16] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. The Linux scheduler: A decade of
wasted cores. In 11th European Conference on Computer Systems
(EuroSys), 2016.

[17] Mohammad Mahhouk, Nico Weichbrodt, and Rüdiger Kapitza. SGX-
oMeter: Open and modular benchmarking for Intel SGX. In 14th
European Workshop on Systems Security (EureSec), 2021.

[18] Giovanni Mazzeo, Sergei Arnautov, Christof Fetzer, and Luigi Romano.
SGXTuner: Performance enhancement of Intel SGX applications via
stochastic optimization. IEEE Transactions on Dependable and Secure
Computing, 2021.

[19] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-
novative instructions and software model for isolated execution. In
2nd International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[20] Larry W McVoy, Carl Staelin, et al. lmbench: Portable tools for
performance analysis. In USENIX annual technical conference, pages
279–294. San Diego, CA, USA, 1996.

[21] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
Eleos: Exitless OS services for SGX enclaves. In 11th European
Conference on Computer Systems (EuroSys), 2016.

[22] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A com-
prehensive survey. ACM Comput. Surv., 51(6), jan 2019.

[23] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A Sartakov, and Peter Pietzuch. SGX-LKL: Se-
curing the host OS interface for trusted execution. arXiv preprint
arXiv:1908.11143, 2019.

[24] OpenSSL Project. Openssl: Cryptography and ssl/tls toolkit. https:
//www.openssl.org/.

[25] OpenSSL Project. Openssl: Evp-aes-256-cbc. https://www.openssl.org/
docs/manmaster/man3/EVP_aes_256_cbc.html.

[26] The Gramine Project. Graphene performance tuning and
analysis. https://github.com/gramineproject/graphene/blob/master/
Documentation/devel/performance.rst#effects-of-system-calls--ocalls,
2021.

[27] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang,
Yi Xu, Yubin Xia, and Shoumeng Yan. Occlum: Secure and efficient
multitasking inside a single enclave of Intel SGX. In 25th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[28] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron
Shacham, Ron Yariv, and Noam Milshten. Switchless calls made
practical in Intel SGX. In 3rd Workshop on System Software for Trusted
Execution (SysTEX), 2018.

[29] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan.
SGXKernel: A library operating system optimized for Intel SGX. In
Computing Frontiers Conference (CF), 2017.

[30] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada
Popa, and Donald E Porter. Civet: An efficient java partitioning
framework for hardware enclaves. In 29th USENIX Security Symposium
(USENIX Security 20), pages 505–522, 2020.

[31] Intel VTune Profiler: Find and fix performance bottlenecks quickly and
realize all the value of your hardware. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/vtune-profiler.html.

[32] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. sgx-perf: A
performance analysis tool for Intel SGX enclaves. In 19th International
Middleware Conference (Middleware), 2018.

[33] Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles
with hotcalls: A fast interface for sgx secure enclaves. In Proceedings
of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, page 81–93, New York, NY, USA, 2017. Association for
Computing Machinery.

[34] Peterson Yuhala, Jämes Ménétrey, Pascal Felber, Valerio Schiavoni,
Alain Tchana, Gaël Thomas, Hugo Guiroux, and Jean-Pierre Lozi.
Montsalvat: Intel SGX shielding for GraalVM native images. In 22nd
International Middleware Conference (Middleware), 2021.

10

https://intel.ly/31MrqTQ
https://tinyurl.com/95xcmak
https://01.org/intel-software-guard-extensions/downloads
https://01.org/intel-software-guard-extensions/downloads
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://download.01.org/intel-sgx/sgx-linux/2.13/docs/Intel_SGX_Developer_Reference_Linux_2.13_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.13/docs/Intel_SGX_Developer_Reference_Linux_2.13_Open_Source.pdf
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
https://github.com/adamierymenko/kissdb
https://github.com/adamierymenko/kissdb
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/docs/manmaster/man3/EVP_aes_256_cbc.html
https://www.openssl.org/docs/manmaster/man3/EVP_aes_256_cbc.html
https://github.com/gramineproject/graphene/blob/master/Documentation/devel/performance.rst#effects-of-system-calls--ocalls
https://github.com/gramineproject/graphene/blob/master/Documentation/devel/performance.rst#effects-of-system-calls--ocalls
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

	Introduction
	Background on Intel SGX
	Limitations of Intel SGX switchless calls
	Switchless calls selection
	Worker thread pool sizing
	Intel SDK parameterisation

	ZC-Switchless
	ZC-Switchless's scheduler
	Worker thread state machine
	Switchless call selection
	Integrating ZC switchless with other TEE implementations
	Security analysis of ZC-Switchless
	Trusted libc's memcpy optimisation

	Evaluation
	Static benchmark: kissdb
	ZC-Switchless vs. Intel switchless
	ZC-Switchless vs. Intel switchless: CPU usage

	Static benchmark: OpenSSL file encryption/decryption
	Dynamic benchmark: lmbench
	Dynamic benchmark: ZC-Switchless vs. Intel switchless
	ZC-Switchless CPU utilisation vs. Intel switchless

	Performance of improved memcpy

	Related work
	Conclusion and Future Work
	References

